第一部分 面向对象高级
一、静态
static读作静态,可以用来修饰成员变量,也能修饰成员方法。我们先来学习static修饰成员变量
1.1 static修饰成员变量
Java中的成员变量按照有无static修饰分为两种:类变量、实例变量
静态变量是属于类的,只需要通过类名就可以调用:类名.静态变量
实例变量是属于对象的,需要通过对象才能调用:对象.实例变量
1.2 static修饰成员变量的应用场景
如果某个数据只需要一份,且希望能够被共享(访问、修改),则该数据可以定义成类变量
1.3 static修饰成员方法
成员方法根据有无static也分为两类:类方法、实例方法
有static修饰的方法,是属于类的,称为类方法;调用时直接用类名调用即可。
无static修饰的方法,是属于对象的,称为实例方法;调用时,需要使用对象调用。
原理:
类方法:static修饰的方法,可以被类名调用,是因为它是随着类的加载而加载的;所以类名直接就可以找到static修饰的方法
实例方法:非static修饰的方法,需要创建对象后才能调用,是因为实例方法中可能会访问实例变量,而实例变量需要创建对象后才存在。
所以实例方法,必须创建对象后才能调用。
1.4 工具类
如果一个类中的方法全都是静态的,那么这个类中的方法就全都可以被类名直接调用,由于调用起来非常方便,就像一个工具一下,所以把这样的类就叫做工具类
举例:
public class MyUtils{
public static String createCode(int n){
//1.定义一个字符串,用来记录产生的验证码
String code = "";
//2.验证码是由所有的大写字母、小写字母或者数字字符组成
//这里先把所有的字符写成一个字符串,一会从字符串中随机找字符
String data = "0123456789abcdefghijklmnopqrstuvwxyzABCDEFGHIJKMNOPQRSTUVWXYZ";
//3.循环n次,产生n个索引,再通过索引获取字符
Random r = new Random();
for(int i=0; i<n; i++){
int index = r.nextInt(data.length());
char ch = data.charAt(index);
//4.把获取到的字符,拼接到code验证码字符串上。
code+=ch;
}
//最后返回code,code的值就是验证码
return code;
}
}
接着可以在任何位置调用MyUtils
的createCOde()方法
产生任意个数的验证码
//比如这是一个登录界面
public class LoginDemo{
public static void main(String[] args){
System.out.println(MyUtils.createCode());
}
}
//比如这是一个注册界面
public class registerDemo{
public static void main(String[] args){
System.out.println(MyUtils.createCode());
}
}
工具类里的方法全都是静态的,推荐用类名调用为了防止使用者用对象调用。我们可以把工具类的构造方法私有化
public class MyUtils{
//私有化构造方法:这样别人就不能使用构造方法new对象了
private MyUtils(){
}
//类方法
public static String createCode(int n){
...
}
}
1.5 static注意事项
1.6 static应用(代码块)
代码块根据有无static修饰分为两种:静态代码块、实例代码块
1.6.1 静态代码块
public class Student {
static int number = 80;
static String schoolName = "黑马";
// 静态代码块
static {
System.out.println("静态代码块执行了~~");
schoolName = "黑马";
}
}
静态代码块不需要创建对象就能够执行
public class Test {
public static void main(String[] args) {
// 目标:认识两种代码块,了解他们的特点和基本作用。
System.out.println(Student.number);
System.out.println(Student.number);
System.out.println(Student.number);
System.out.println(Student.schoolName); // 黑马
}
}
静态代码块,随着类的加载而执行,而且只执行一次
1.6.2 实例代码块
实例代码块的作用和构造器的作用是一样的,用来给对象初始化值;而且每次创建对象之前都会先执行实例代码块
实例代码块每次创建对象之前都会执行一次
1.7 static应用(单例设计模式)
二、继承
2.1 概述
2.2 继承的好处
可以把重复的代码提取出来,作为父类,然后让其他类继承父类就可以了,这样可以提高代码的复用性
先写一个父类 People,用来设计Teacher和Consultant公有的成员
public class People{
private String name;
public String getName(){
return name;
}
public void setName(String name){
this.name=name;
}
}
再写两个子类Teacher继承People类,同时在子类中加上自己特有的成员
public class Teacher extends People{
private String skill; //技能
public String getSkill(){
return skill;
}
public void setSkill(String skill){
this.skill=skill;
}
public void printInfo(){
System.out.println(getName()+"具备的技能:"+skill);
}
}
consultant类
public class Consultant extends People{
private int number;
public int getNumber(){
return number;
}
public void setNumber(int number){
this.number = number;
}
}
最后再写一个测试类,再测试类中创建Teacher、Consultant对象,并调用方法
public class Test {
public static void main(String[] args) {
// 目标:搞清楚继承的好处。
Teacher t = new Teacher();
t.setName("播仔");
t.setSkill("Java、Spring");
System.out.println(t.getName());
System.out.println(t.getSkill());
t.printInfo();
}
}
2.3 权限的修饰符
权限修饰符是用来限制类的成员(成员变量、成员方法、构造器...)能够被访问的范围
举例:
public class Fu {
// 1、私有:只能在本类中访问
private void privateMethod(){
System.out.println("==private==");
}
// 2、缺省:本类,同一个包下的类
void method(){
System.out.println("==缺省==");
}
// 3、protected: 本类,同一个包下的类,任意包下的子类
protected void protectedMethod(){
System.out.println("==protected==");
}
// 4、public: 本类,同一个包下的类,任意包下的子类,任意包下的任意类
public void publicMethod(){
System.out.println("==public==");
}
public void test(){
//在本类中,所有权限都可以被访问到
privateMethod(); //正确
method(); //正确
protectedMethod(); //正确
publicMethod(); //正确
}
}
在和Fu类同一个包下,创建一个测试类Demo,演示同一个包下可以访问到哪些权限修饰的方法
public class Demo {
public static void main(String[] args) {
Fu f = new Fu();
// f.privateMethod(); //私有方法无法使用
f.method();
f.protectedMethod();
f.publicMethod();
}
}
在另一个包下创建一个Fu类的子类,演示不同包下的子类中可以访问哪些权限修饰的方法
public class Zi extends Fu {
//在不同包下的子类中,只能访问到public、protected修饰的方法
public void test(){
// privateMethod(); // 报错
// method(); // 报错
protectedMethod(); //正确
publicMethod(); //正确
}
}
在和Fu类不同的包下,创建一个测试类Demo2,演示一下不同包的无关类,能访问到哪些权限修饰的方法
public class Demo2 {
public static void main(String[] args) {
Fu f = new Fu();
// f.privateMethod(); // 报错
// f.method(); //报错
// f.protecedMethod();//报错
f.publicMethod(); //正确
Zi zi = new Zi();
// zi.protectedMethod();
}
}
2.4 单继承、Object
Java语言只支持单继承,不支持多继承,但是可以多层继承
public class Test {
public static void main(String[] args) {
// 目标:掌握继承的两个注意事项事项。
// 1、Java是单继承的:一个类只能继承一个直接父类;
// 2、Object类是Java中所有类的祖宗。
A a = new A();
B b = new B();
ArrayList list = new ArrayList();
list.add("java");
System.out.println(list.toString());
}
}
class A {} //extends Object{}
class B extends A{}
// class C extends B , A{} // 报错
class D extends B{}
2.5 方法重写
当子类觉得父类方法不好用,或者无法满足父类需求时,子类可以重写一个方法名称、参数列表一样的方法,去覆盖父类的这个方法,这就是方法重写,重写后,方法的访问遵循就近原则
注意:
1)重写的方法上面,可以加一个注解@Override,用于标注这个方法是复写的父类方法
2)子类复写父类方法时,访问权限必须大于或者等于父类方法的权限:public > protected > 缺省
3)重写的方法返回值类型,必须与被重写的方法返回值类型一样,或者范围更小
4)私有方法、静态方法不能被重写,如果重写会报错。
总结:声明不变,重新实现
举例:子类重写Object的toString()方法,以便返回对象的内容
有一个Student类,这个类会默认继承Object类
public class Student extends Object{
private String name;
private int age;
public Student() {
}
public Student(String name, int age) {
this.name = name;
this.age = age;
}
public String getName() {
return name;
}
public void setName(String name) {
this.name = name;
}
public int getAge() {
return age;
}
public void setAge(int age) {
this.age = age;
}
}
其实Object类中有一个toString()方法,直接通过Student对象调用Object的toString()方法,会得到对象的地址值
public class Test {
public static void main(String[] args) {
Student s = new Student("播妞", 19);
// System.out.println(s.toString());
System.out.println(s);
}
}
不想调用父类Object的toString()方法,那就可以在Student类中重新写一个toSting()方法,用于返回对象的属性值
package com.itheima.d12_extends_override;
public class Student extends Object{
private String name;
private int age;
public Student() {
}
public Student(String name, int age) {
this.name = name;
this.age = age;
}
public String getName() {
return name;
}
public void setName(String name) {
this.name = name;
}
public int getAge() {
return age;
}
public void setAge(int age) {
this.age = age;
}
@Override
public String toString() {
return "Student{" +
"name='" + name + '\'' +
", age=" + age +
'}';
}
}
2.6 子类中访问成员的特点
在子类中访问其他成员(成员变量、成员方法),是依据就近原则的
举例:
public class F {
String name = "父类名字";
public void print1(){
System.out.println("==父类的print1方法执行==");
}
}
再定义一个子类,有一个同名的name成员变量,有一个同名的print1成员方法
public class Z extends F {
String name = "子类名称";
public void showName(){
String name = "局部名称";
System.out.println(name); // 局部名称
}
@Override
public void print1(){
System.out.println("==子类的print1方法执行了=");
}
public void showMethod(){
print1(); // 子类的
}
}
接下来写一个测试类,观察运行结果,我们发现都是调用的子类变量、子类方法
public class Test {
public static void main(String[] args) {
// 目标:掌握子类中访问其他成员的特点:就近原则。
Z z = new Z();
z.showName();
z.showMethod();
}
}
如果子类和父类出现同名变量或者方法,优先使用子类的;此时如果一定要在子类中使用父类的成员,可以加this或者super进行区分
public class Z extends F {
String name = "子类名称";
public void showName(){
String name = "局部名称";
System.out.println(name); // 局部名称
System.out.println(this.name); // 子类成员变量
System.out.println(super.name); // 父类的成员变量
}
@Override
public void print1(){
System.out.println("==子类的print1方法执行了=");
}
public void showMethod(){
print1(); // 子类的
super.print1(); // 父类的
}
}
2.7 子类中访问构造器的特点
子类全部构造器,都会先调用父类构造器,再执行自己
如果不想使用默认的super()
方式调用父类构造器,还可以手动使用super(参数)
调用父类有参数构造器
有时候我们也需要访问自己类的构造器。语法如下
this(): 调用本类的空参数构造器
this(参数): 调用本类有参数的构造器
访问本类成员:
this.成员变量 //访问本类成员变量
this.成员方法 //调用本类成员方法
this() //调用本类空参数构造器
this(参数) //调用本类有参数构造器
访问父类成员:
super.成员变量 //访问父类成员变量
super.成员方法 //调用父类成员方法
super() //调用父类空参数构造器
super(参数) //调用父类有参数构造器
注意:this和super访问构造方法,只能用到构造方法的第一句,否则会报错。
三、多态
3.1 概述
多态是在继承、实现情况下的一种现象,表现为:对象多态、行为多态
3.2 多态的好处
在多态形式下,右边的代码是解耦合的,更便于扩展和维护
定义方法时,使用父类类型作为形参,可以接收一切子类对象,扩展行更强,更便利
3.3 类型转换
在多态形式下,不能调用子类特有的方法,比如在Teacher类中多了一个teach方法,在Student类中多了一个study方法,这两个方法在多态形式下是不能直接调用的
多态形式下不能直接调用子类特有方法,但是转型后是可以调用的。这里所说的转型就是把父类变量转换为子类类型
//如果p接收的是子类对象
if(父类变量 instanceof 子类){
//则可以将p转换为子类类型
子类 变量名 = (子类)父类变量;
}
如果类型转换错了,就会出现类型转换异常ClassCastException,比如把Teacher类型转换成了Student类型
原本是什么类型,才能还原成什么类型
四、final关键字
4.1 特点
final关键字是最终的意思,可以修饰类、修饰方法、修饰变量
- final修饰类:该类称为最终类,特点是不能被继承
- final修饰方法:该方法称之为最终方法,特点是不能被重写。
- final修饰变量:该变量只能被赋值一次。
4.2 常量
在实际运用当中经常使用final来定义常量
被 static final 修饰的成员变量,称之为常量。
通常用于记录系统的配置信息
public class Constant {
//常量: 定义一个常量表示学校名称
//为了方便在其他类中被访问所以一般还会加上public修饰符
//常量命名规范:建议都采用大写字母命名,多个单词之前有_隔开
public static final String SCHOOL_NAME = "传智教育";
}
五、抽象
5.1 概述
在Java中有一个关键字叫abstract,它就是抽象的意思,它可以修饰类也可以修饰方法
- 被abstract修饰的类,就是抽象类
- 被abstract修饰的方法,就是抽象方法(不允许有方法体)
//abstract修饰类,这个类就是抽象类
public abstract class A{
//abstract修饰方法,这个方法就是抽象方法
public abstract void test();
}
类的成员(成员变量、成员方法、构造器)都可以有
// 抽象类
public abstract class A {
//成员变量
private String name;
static String schoolName;
//构造方法
public A(){
}
//抽象方法
public abstract void test();
//实例方法
public String getName() {
return name;
}
public void setName(String name) {
this.name = name;
}
}
抽象类是不能创建对象的,如果抽象类的对象就会报错
抽象类虽然不能创建对象,但是它可以作为父类让子类继承。而且子类继承父类必须重写父类的所有抽象方法
//B类继承A类,必须复写test方法
public class B extends A {
@Override
public void test() {
}
}
子类继承父类如果不复写父类的抽象方法,要想不出错,这个子类也必须是抽象类
//B类继承A类,此时B类也是抽象类,这个时候就可以不重写A类的抽象方法
public abstract class B extends A {
}
5.2 抽象类的好处
分析需求发现,该案例中猫和狗都有名字这个属性,也都有叫这个行为,所以我们可以将共性的内容抽取成一个父类,Animal类,但是由于猫和狗叫的声音不一样,于是我们在Animal类中将叫的行为写成抽象的
public abstract class Animal {
private String name;
//动物叫的行为:不具体,是抽象的
public abstract void cry();
public String getName() {
return name;
}
public void setName(String name) {
this.name = name;
}
}
接着写一个Animal的子类,Dog类
public class Dog extends Animal{
public void cry(){
System.out.println(getName() + "汪汪汪的叫~~");
}
}
再写一个Animal的子类,Cat类
public class Cat extends Animal{
public void cry(){
System.out.println(getName() + "喵喵喵的叫~~");
}
}
再写一个测试类,Test类
public class Test2 {
public static void main(String[] args) {
// 目标:掌握抽象类的使用场景和好处.
Animal a = new Dog();
a.cry(); //这时执行的是Dog类的cry方法
}
}
假设现在系统有需要加一个Pig类,也有叫的行为,这时候也很容易原有功能扩展。只需要让Pig类继承Animal,复写cry方法就行
public class Pig extends Animal{
@Override
public void cry() {
System.out.println(getName() + "嚯嚯嚯~~~");
}
}
创建对象时,让Animal接收Pig,就可以执行Pig的cry方法
public class Test2 {
public static void main(String[] args) {
// 目标:掌握抽象类的使用场景和好处.
Animal a = new Pig();
a.cry(); //这时执行的是Pig类的cry方法
}
}
总结:
1.用抽象类可以把父类中相同的代码,包括方法声明都抽取到父类,这样能更好的支持多态,提高代码的灵活性。
2.反过来用,我们不知道系统未来具体的业务实现时,我们可以先定义抽象类,将来让子类去实现,以方便系统的扩展。
5.3 模板方法模式
设计模式是解决某一类问题的最优方案
模板方法模式主要解决方法中存在重复代码的问题
比如A类和B类都有sing()方法,sing()方法的开头和结尾都是一样的,只是中间一段内容不一样。此时A类和B类的sing()方法中就存在一些相同的代码。
可以写一个抽象类C类,在C类中写一个doSing()的抽象方法。再写一个sing()方法
// 模板方法设计模式
public abstract class C {
// 模板方法
public final void sing(){
System.out.println("唱一首你喜欢的歌:");
doSing();
System.out.println("唱完了!");
}
public abstract void doSing();
}
写一个A类继承C类,复写doSing()方法
public class A extends C{
@Override
public void doSing() {
System.out.println("我是一只小小小小鸟,想要飞就能飞的高~~~");
}
}
再写一个B类继承C类,也复写doSing()方法
public class B extends C{
@Override
public void doSing() {
System.out.println("我们一起学猫叫,喵喵喵喵喵喵喵~~");
}
}
再写一个测试类Test
public class Test {
public static void main(String[] args) {
// 目标:搞清楚模板方法设计模式能解决什么问题,以及怎么写。
B b = new B();
b.sing();
}
}
六、接口
6.1 概述
Java提供了一个关键字interface,用这个关键字来定义接口这种特殊结构
public interface 接口名{
//成员变量(常量)
//成员方法(抽象方法)
}
接口是用来被类实现(implements)的,我们称之为实现类。
一个类是可以实现多个接口的(接口可以理解成干爹),类实现接口必须重写所有接口的全部抽象方法,否则这个类也必须是抽象类
public interface A{
//这里public static final可以加,可以不加。
public static final String SCHOOL_NAME = "黑马程序员";
//这里的public abstract可以加,可以不加。
public abstract void test();
}
写好A接口之后,在写一个测试类
public class Test{
public static void main(String[] args){
//打印A接口中的常量
System.out.println(A.SCHOOL_NAME);
//接口是不能创建对象的
A a = new A();
}
}
再定义一个B接口,里面有两个方法testb1(),testb2()
public interface B {
void testb1();
void testb2();
}
再定义一个C接口,里面有两个方法testc1(), testc2()
public interface C {
void testc1();
void testc2();
}
再写一个实现类D,同时实现B接口和C接口,此时就需要复写四个方法
// 实现类
public class D implements B, C{
@Override
public void testb1() {
}
@Override
public void testb2() {
}
@Override
public void testc1() {
}
@Override
public void testc2() {
}
}
定义一个测试类Test
public class Test {
public static void main(String[] args) {
// 目标:认识接口。
System.out.println(A.SCHOOL_NAME);
// A a = new A();
D d = new D();
}
}
6.2 案例演示
首先我们写一个学生类,用来描述学生的相关信息
public class Student {
private String name;
private char sex;
private double score;
public Student() {
}
public Student(String name, char sex, double score) {
this.name = name;
this.sex = sex;
this.score = score;
}
public String getName() {
return name;
}
public void setName(String name) {
this.name = name;
}
public char getSex() {
return sex;
}
public void setSex(char sex) {
this.sex = sex;
}
public double getScore() {
return score;
}
public void setScore(double score) {
this.score = score;
}
}
写一个StudentOperator接口,表示学生信息管理系统的两个功能
public interface StudentOperator {
void printAllInfo(ArrayList<Student> students);
void printAverageScore(ArrayList<Student> students);
}
写一个StudentOperator接口的实现类StudentOperatorImpl1,采用第1套方案对业务进行实现
public class StudentOperatorImpl1 implements StudentOperator{
@Override
public void printAllInfo(ArrayList<Student> students) {
System.out.println("----------全班全部学生信息如下--------------");
for (int i = 0; i < students.size(); i++) {
Student s = students.get(i);
System.out.println("姓名:" + s.getName() + ", 性别:" + s.getSex() + ", 成绩:" + s.getScore());
}
System.out.println("-----------------------------------------");
}
@Override
public void printAverageScore(ArrayList<Student> students) {
double allScore = 0.0;
for (int i = 0; i < students.size(); i++) {
Student s = students.get(i);
allScore += s.getScore();
}
System.out.println("平均分:" + (allScore) / students.size());
}
}
再写一个StudentOperator接口的实现类StudentOperatorImpl2,采用第2套方案对业务进行实现
public class StudentOperatorImpl2 implements StudentOperator{
@Override
public void printAllInfo(ArrayList<Student> students) {
System.out.println("----------全班全部学生信息如下--------------");
int count1 = 0;
int count2 = 0;
for (int i = 0; i < students.size(); i++) {
Student s = students.get(i);
System.out.println("姓名:" + s.getName() + ", 性别:" + s.getSex() + ", 成绩:" + s.getScore());
if(s.getSex() == '男'){
count1++;
}else {
count2 ++;
}
}
System.out.println("男生人数是:" + count1 + ", 女士人数是:" + count2);
System.out.println("班级总人数是:" + students.size());
System.out.println("-----------------------------------------");
}
@Override
public void printAverageScore(ArrayList<Student> students) {
double allScore = 0.0;
double max = students.get(0).getScore();
double min = students.get(0).getScore();
for (int i = 0; i < students.size(); i++) {
Student s = students.get(i);
if(s.getScore() > max) max = s.getScore();
if(s.getScore() < min) min = s.getScore();
allScore += s.getScore();
}
System.out.println("学生的最高分是:" + max);
System.out.println("学生的最低分是:" + min);
System.out.println("平均分:" + (allScore - max - min) / (students.size() - 2));
}
}
再写一个班级管理类ClassManager,在班级管理类中使用StudentOperator的实现类StudentOperatorImpl1对学生进行操作
public class ClassManager {
private ArrayList<Student> students = new ArrayList<>();
private StudentOperator studentOperator = new StudentOperatorImpl1();
public ClassManager(){
students.add(new Student("迪丽热巴", '女', 99));
students.add(new Student("古力娜扎", '女', 100));
students.add(new Student("马尔扎哈", '男', 80));
students.add(new Student("卡尔扎巴", '男', 60));
}
// 打印全班全部学生的信息
public void printInfo(){
studentOperator.printAllInfo(students);
}
// 打印全班全部学生的平均分
public void printScore(){
studentOperator.printAverageScore(students);
}
}
再写一个测试类Test,在测试类中使用ClassMananger完成班级学生信息的管理
public class Test {
public static void main(String[] args) {
// 目标:完成班级学生信息管理的案例。
ClassManager clazz = new ClassManager();
clazz.printInfo();
clazz.printScore();
}
}
想切换班级管理系统的业务功能,随时可以将StudentOperatorImpl1切换为StudentOperatorImpl2
6.3 接口JDK8的新特性
public interface A {
/**
* 1、默认方法:必须使用default修饰,默认会被public修饰
* 实例方法:对象的方法,必须使用实现类的对象来访问。
*/
default void test1(){
System.out.println("===默认方法==");
test2();
}
/**
* 2、私有方法:必须使用private修饰。(JDK 9开始才支持的)
* 实例方法:对象的方法。
*/
private void test2(){
System.out.println("===私有方法==");
}
/**
* 3、静态方法:必须使用static修饰,默认会被public修饰
*/
static void test3(){
System.out.println("==静态方法==");
}
void test4();
void test5();
default void test6(){
}
}
接下来我们写一个B类,实现A接口。
B类作为A接口的实现类,只需要重写抽象方法,对于默认方法不需要子类重写
public class B implements A{
@Override
public void test4() {
}
@Override
public void test5() {
}
}
写一个测试类,观察接口中的三种方法
public class Test {
public static void main(String[] args) {
// 目标:掌握接口新增的三种方法形式
B b = new B();
b.test1(); //默认方法使用对象调用
// b.test2(); //A接口中的私有方法,B类调用不了
A.test3(); //静态方法,使用接口名调用
}
}
6.4 注意事项
一个接口可以继承多个接口
public class Test {
public static void main(String[] args) {
// 目标:理解接口的多继承。
}
}
interface A{
void test1();
}
interface B{
void test2();
}
interface C{}
//比如:D接口继承C、B、A
interface D extends C, B, A{
}
//E类在实现D接口时,必须重写D接口、以及其父类中的所有抽象方法。
class E implements D{
@Override
public void test1() {
}
@Override
public void test2() {
}
}
1.一个接口继承多个接口,如果多个接口中存在相同的方法声明,则此时不支持多继承
2.一个类实现多个接口,如果多个接口中存在相同的方法声明,则此时不支持多实现
3.一个类继承了父类,又同时实现了接口,父类中和接口中有同名的默认方法,实现类会有限使用父类的方法
4.一个类实现类多个接口,多个接口中有同名的默认方法,则这个类必须重写该方法。
一个接口可以继承多个接口,接口同时也可以被类实现
七、内部类
当一个类的内部,包含一个完整的事物,且这个事物没有必要单独设计时,就可以把这个事物设计成内部类
public class Car{
//内部类
public class Engine{
}
}
内部类有四种形式,分别是成员内部类、静态内部类、局部内部类、匿名内部类
7.1 成员内部类
成员内部类就是类中的一个普通成员,类似于成员变量、成员方法
public class Outer {
private int age = 99;
public static String a="黑马";
// 成员内部类
public class Inner{
private String name;
private int age = 88;
//在内部类中既可以访问自己类的成员,也可以访问外部类的成员
public void test(){
System.out.println(age); //88
System.out.println(a); //黑马
int age = 77;
System.out.println(age); //77
System.out.println(this.age); //88
System.out.println(Outer.this.age); //99
}
public String getName() {
return name;
}
public void setName(String name) {
this.name = name;
}
public int getAge() {
return age;
}
public void setAge(int age) {
this.age = age;
}
}
}
成员内部类创建对象,格式如下
//外部类.内部类 变量名 = new 外部类().new 内部类();
Outer.Inner in = new Outer().new Inner();
//调用内部类的方法
in.test();
既可以访问内部类成员、也可以访问外部类成员
如果内部类成员和外部类成员同名,可以使用类名.this.成员
区分
7.2 静态内部类
静态内部类,其实就是在成员内部类的前面加了一个static关键字。静态内部类属于外部类自己持有
public class Outer {
private int age = 99;
public static String schoolName="黑马";
// 静态内部类
public static class Inner{
//静态内部类访问外部类的静态变量,是可以的;
//静态内部类访问外部类的实例变量,是不行的
public void test(){
System.out.println(schoolName); //99
//System.out.println(age); //报错
}
}
}
静态内部类创建对象时,需要使用外部类的类名调用
//格式:外部类.内部类 变量名 = new 外部类.内部类();
Outer.Inner in = new Outer.Inner();
in.test();
7.3 局部内部类
局部内部类是定义在方法中的类,和局部变量一样,只能在方法中有效。所以局部内部类的局限性很强,一般在开发中是不会使用的。
public class Outer{
public void test(){
//局部内部类
class Inner{
public void show(){
System.out.println("Inner...show");
}
}
//局部内部类只能在方法中创建对象,并使用
Inner in = new Inner();
in.show();
}
}
7.4 匿名内部类
7.4.1 概述和使用
实际开发中用得最多的一种内部类,叫匿名内部类
匿名内部类是一种特殊的局部内部类;所谓匿名,指的是程序员不需要为这个类声明名字
new 父类/接口(参数值){
@Override
重写父类/接口的方法;
}
匿名内部类本质上是一个没有名字的子类对象、或者接口的实现类对象
先定义一个Animal抽象类,里面定义一个cry()方法,表示所有的动物有叫的行为,但是因为动物还不具体,cry()这个行为并不能具体化,所以写成抽象方法
public abstract class Animal{
public abstract void cry();
}
我想要在不定义子类的情况下创建Animal的子类对象,就可以使用匿名内部类
public class Test{
public static void main(String[] args){
//这里后面new 的部分,其实就是一个Animal的子类对象
//这里隐含的有多态的特性: Animal a = Animal子类对象;
Animal a = new Animal(){
@Override
public void cry(){
System.out.println("猫喵喵喵的叫~~~");
}
}
a.eat(); //直线上面重写的cry()方法
}
}
匿名内部类在编写代码时没有名字,编译后系统会为自动为匿名内部类生产字节码,字节码的名称会以外部类$1.class
的方法命名
匿名内部类的作用:简化了创建子类对象、实现类对象的书写格式
7.4.2 应用场景
一般我们会主动的使用匿名内部类
只有在调用方法时,当方法的形参是一个接口或者抽象类,为了简化代码书写,而直接传递匿名内部类对象给方法。这样就可以少写一个类
public interface Swimming{
public void swim();
}
public class Test{
public static void main(String[] args){
Swimming s1 = new Swimming(){
public void swim(){
System.out.println("狗刨飞快");
}
};
go(s1);
Swimming s1 = new Swimming(){
public void swim(){
System.out.println("猴子游泳也还行");
}
};
go(s1);
}
//形参是Swimming接口,实参可以接收任意Swimming接口的实现类对象
public static void go(Swimming s){
System.out.println("开始~~~~~~~~");
s.swim();
System.out.println("结束~~~~~~~~");
}
}
八、枚举
8.1 认识枚举
8.1.1 概述和原理
枚举是一种特殊的类
public enum 枚举类名{
枚举项1,枚举项2,枚举项3;
}
其实枚举项就表示枚举类的对象,只是这些对象在定义枚举类时就预先写好了,以后就只能用这几个固定的对象
public enum A{
X,Y,Z;
}
想要获取枚举类中的枚举项,只需要用类名调用就可以了
public class Test{
public static void main(String[] args){
//获取枚举A类的,枚举项
A a1 = A.X;
A a2 = A.Y;
A a3 = A.Z;
}
}
8.1.2 枚举深入
在枚举类中定义构造器、成员变量、成员方法
public enum A{
//定义枚举项
X,Y,Z("张三"); //枚举项后面加括号,就是在执行枚举类的带参数构造方法。
//定义空构造器
public A(){
}
//成员变量
private String name;
//定义带参数构造器
public A(String name){
this.name=name;
}
//成员方法
public String getName(){
return name;
}
...
}
虽然枚举类中可以像类一样,写一些类的其他成员,但是一般不会这么写,如果你真要这么干的话,到不如直接写普通类来的直接
8.2 枚举的应用场景
枚举一般表示一组信息,然后作为参数进行传输
举例:用户进入应用时,需要让用户选择是女生、还是男生,然后系统会根据用户选择的是男生,还是女生推荐不同的信息给用户观看
先定义一个枚举类,用来表示男生、或者女生
public class Constant{
BOY,GRIL
}
再定义一个测试类,完成用户进入系统后的选择
public class Test{
public static void main(String[] args){
//调用方法,传递男生
provideInfo(Constant.BOY);
}
public static void provideInfo(Constant c){
switch(c){
case BOY:
System.out.println("展示一些信息给男生看");
break;
case GRIL:
System.out.println("展示一些信息给女生看");
break;
}
}
}
枚举一般表示几个固定的值,然后作为参数进行传输
九、泛型
9.1 认识泛型
在定义类、接口、方法时,同时声明了一个或者多个类型变量(如:
比如我们前面学过的ArrayList类就是一个泛型类
ArrayList集合的设计者在定义ArrayList集合时,就已经明确ArrayList集合时给别人装数据用的,但是别人用ArrayList集合时候,装什么类型的数据他不知道,所以就用一个<E>
表示元素的数据类型
当别人使用ArrayList集合创建对象时,new ArrayList<String>
就表示元素为String类型,new ArrayList<Integer>
表示元素为Integer类型
泛型的好处:在编译阶段可以避免出现一些非法的数据。
泛型的本质:把具体的数据类型传递给类型变量
9.2 自定义泛型类
泛型类,在实际工作中一般都是源代码中写好,我们直接用的,就是ArrayList
//这里的<T,W>其实指的就是类型变量,可以是一个,也可以是多个。
public class 类名<T,W>{
}
定义一个MyArrayList<E>泛型类,模拟一下自定义泛型类的使用
//定义一个泛型类,用来表示一个容器
//容器中存储的数据,它的类型用<E>先代替用着,等调用者来确认<E>的具体类型。
public class MyArrayList<E>{
private Object[] array = new Object[10];
//定一个索引,方便对数组进行操作
private int index;
//添加元素
public void add(E e){
array[index]=e;
index++;
}
//获取元素
public E get(int index){
return (E)array[index];
}
}
写一个测试类,来测试自定义的泛型类MyArrayList是否能够正常使用
public class Test{
public static void main(String[] args){
//1.确定MyArrayList集合中,元素类型为String类型
MyArrayList<String> list = new MyArrayList<>();
//此时添加元素时,只能添加String类型
list.add("张三");
list.add("李四");
//2.确定MyArrayList集合中,元素类型为Integer类型
MyArrayList<Integer> list1 = new MyArrayList<>();
//此时添加元素时,只能添加String类型
list.add(100);
list.add(200);
}
}
9.3 自定义泛型接口
泛型接口其实指的是在接口中把不确定的数据类型用<类型变量>
表示
//这里的类型变量,一般是一个字母,比如<E>
public interface 接口名<类型变量>{
}
我们现在要做一个系统要处理学生和老师的数据,需要提供2个功能,保存对象数据、根据名称查询数据,要求:这两个功能处理的数据既能是老师对象,也能是学生对象
public class Teacher{
}
public class Student{
}
定义一个Data<T>
泛型接口,T表示接口中要处理数据的类型
public interface Data<T>{
public void add(T t);
public ArrayList<T> getByName(String name);
}
写一个处理Teacher对象的接口实现类
//此时确定Data<E>中的E为Teacher类型,
//接口中add和getByName方法上的T也都会变成Teacher类型
public class TeacherData implements Data<Teacher>{
public void add(Teacher t){
}
public ArrayList<Teacher> getByName(String name){
}
}
写一个处理Student对象的接口实现类
//此时确定Data<E>中的E为Student类型,
//接口中add和getByName方法上的T也都会变成Student类型
public class StudentData implements Data<Student>{
public void add(Student t){
}
public ArrayList<Student> getByName(String name){
}
}
实际工作中,一般也都是框架底层源代码把泛型接口写好,我们实现泛型接口就可以了
9.4 泛型方法
public <泛型变量,泛型变量> 返回值类型 方法名(形参列表){
}
在返回值类型和修饰符之间有
举例:
public class Test{
public static void main(String[] args){
//调用test方法,传递字符串数据,那么test方法的泛型就是String类型
String rs = test("test");
//调用test方法,传递Dog对象,那么test方法的泛型就是Dog类型
Dog d = test(new Dog());
}
//这是一个泛型方法<T>表示一个不确定的数据类型,由调用者确定
public static <T> test(T t){
return t;
}
}
9.5 泛型限定
泛型限定的意思是对泛型的数据类型进行范围的限制。有如下的三种格式
<?> 表示任意类型
<? extends 数据类型> 表示指定类型或者指定类型的子类
<? super 数据类型> 表示指定类型或者指定类型的父类
演示一下,假设有Car作为父类,BENZ,BWM两个类作为Car的子类
class Car{}
class BENZ extends Car{}
class BWN extends Car{}
public class Test{
public static void main(String[] args){
//1.集合中的元素不管是什么类型,test1方法都能接收
ArrayList<BWM> list1 = new ArrayList<>();
ArrayList<Benz> list2 = new ArrayList<>();
ArrayList<String> list3 = new ArrayList<>();
test1(list1);
test1(list2);
test1(list3);
//2.集合中的元素只能是Car或者Car的子类类型,才能被test2方法接收
ArrayList<Car> list4 = new ArrayList<>();
ArrayList<BWM> list5 = new ArrayList<>();
test2(list4);
test2(list5);
//2.集合中的元素只能是Car或者Car的父类类型,才能被test3方法接收
ArrayList<Car> list6 = new ArrayList<>();
ArrayList<Object> list7 = new ArrayList<>();
test3(list6);
test3(list7);
}
public static void test1(ArrayList<?> list){
}
public static void test2(ArrayList<? extends Car> list){
}
public static void test3(ArrayList<? super Car> list){
}
}
9.6 泛型擦除
泛型只能编译阶段有效,一旦编译成字节码,字节码中是不包含泛型的
泛型只支持引用数据类型,不支持基本数据类型
十、常用API
API(Application Programming interface)意思是应用程序编程接口
10.1 Object类
找到其中两个方法
10.1.1 toString()方法
public String toString()
调用toString()方法可以返回对象的字符串表示形式。
默认的格式是:“包名.类名@哈希值16进制”
public class Student{
private String name;
private int age;
public Student(String name, int age){
this.name=name;
this.age=age;
}
}
测试类
public class Test{
public static void main(String[] args){
Student s1 = new Student("赵敏",23);
System.out.println(s1.toString());
}
}
在Student类重写toString()方法,那么我们可以返回对象的属性值
public class Student{
private String name;
private int age;
public Student(String name, int age){
this.name=name;
this.age=age;
}
@Override
public String toString(){
return "Student{name=‘"+name+"’, age="+age+"}";
}
}
10.1.2 equals(Object o)方法
public boolean equals(Object o)
判断此对象与参数对象是否"相等"
写一个测试类
public class Test{
public static void main(String[] args){
Student s1 = new Student("赵薇",23);
Student s2 = new Student("赵薇",23);
//equals本身也是比较对象的地址,和"=="没有区别
System.out.println(s1.equals(s2)); //false
//"=="比较对象的地址
System.out.println(s1==s2); //false
}
}
如果我们在Student类中,把equals方法重写了,就按照对象的属性值进行比较
public class Student{
private String name;
private int age;
public Student(String name, int age){
this.name=name;
this.age=age;
}
@Override
public String toString(){
return "Student{name=‘"+name+"’, age="+age+"}";
}
//重写equals方法,按照对象的属性值进行比较
@Override
public boolean equals(Object o) {
if (this == o) return true;
if (o == null || getClass() != o.getClass()) return false;
Student student = (Student) o;
if (age != student.age) return false;
return name != null ? name.equals(student.name) : student.name == null;
}
}
小结:
public String toString()
返回对象的字符串表示形式。默认的格式是:“包名.类名@哈希值16进制”
【子类重写后,返回对象的属性值】
public boolean equals(Object o)
判断此对象与参数对象是否"相等"。默认比较对象的地址值,和"=="没有区别
【子类重写后,比较对象的属性值】
10.1.3 clone()方法
public Object clone()
克隆当前对象,返回一个新对象
想要调用clone()方法,必须让被克隆的类实现Cloneable接口。如我们准备克隆User类的对象
public class User implements Cloneable{
private String id; //编号
private String username; //用户名
private String password; //密码
private double[] scores; //分数
//public User(int i, String zhangsan, String wo666, double[] scores) {
// }
public User(String id, String username, String password, double[] scores) {
this.id = id;
this.username = username;
this.password = password;
this.scores = scores;
}
public User(int i, String zhangsan, String wo666, double[] scores) {
}
public String getId() {
return id;
}
public String getUsername() {
return username;
}
public String getPassword() {
return password;
}
public double[] getScores() {
return scores;
}
@Override
protected Object clone() throws CloneNotSupportedException {
return super.clone();
}
}
写一个测试类,克隆User类的对象
public class Test {
public static void main(String[] args) throws CloneNotSupportedException {
User u1 = new User(1,"zhangsan","wo666",new double[]{99.0,99.5});
//调用方法克隆得到一个新对象
User u2 = (User) u1.clone();
System.out.println(u2.getId());
System.out.println(u2.getUsername());
System.out.println(u2.getPassword());
System.out.println(u2.getScores());
}
}
10.2 Objects类
Objects是一个工具类,提供了一些方法可以对任意对象进行操作。主要方法如下
public class Test{
public static void main(String[] args){
String s1 = null;
String s2 = "itheima";
//这里会出现NullPointerException异常,调用者不能为null
System.out.println(s1.equals(s2));
//此时不会有NullPointerException异常,底层会自动先判断空
System.out.println(Objects.equals(s1,s2));
//判断对象是否为null,等价于==
System.out.println(Objects.isNull(s1)); //true
System.out.println(s1==null); //true
//判断对象是否不为null,等价于!=
System.out.println(Objects.nonNull(s2)); //true
System.out.println(s2!=null); //true
}
}
10.3 基本类型包装类
Java中8种基本数据类型都用一个包装类与之对一个,如下图所示
我们学习包装类,主要学习两点:
-
创建包装类的对象方式、自动装箱和拆箱的特性;
-
利用包装类提供的方法对字符串和基本类型数据进行相互转换
10.3.1 创建包装类对象
创建包装类对象的方法,以及包装类的一个特性叫自动装箱和自动拆箱。我们以Integer为例
//1.创建Integer对象,封装基本类型数据10
Integer a = new Integer(10);
//2.使用Integer类的静态方法valueOf(数据)
Integer b = Integer.valueOf(10);
//3.还有一种自动装箱的写法(意思就是自动将基本类型转换为引用类型)
Integer c = 10;
//4.有装箱肯定还有拆箱(意思就是自动将引用类型转换为基本类型)
int d = c;
//5.装箱和拆箱在使用集合时就有体现
ArrayList<Integer> list = new ArrayList<>();
//添加的元素是基本类型,实际上会自动装箱为Integer类型
list.add(100);
//获取元素时,会将Integer类型自动拆箱为int类型
int e = list.get(0);
10.3.2 包装类数据类型转换
在开发中,经常使用包装类对字符串和基本类型数据进行相互转换。
把字符串转换为数值型数据:包装类.parseXxx(字符串)
public static int parseInt(String s)
//把字符串转换为基本数据类型
将数值型数据转换为字符串:包装类.valueOf(数据);
public static String valueOf(int a)
//把基本类型数据转换为字符串
写一个测试类演示一下
//1.字符串转换为数值型数据
String ageStr = "29";
int age1 = Integer.parseInt(ageStr);
String scoreStr = 3.14;
double score = Double.prarseDouble(scoreStr);
//2.整数转换为字符串,以下几种方式都可以(挑中你喜欢的记一下)
Integer a = 23;
String s1 = Integer.toString(a);
String s2 = a.toString();
String s3 = a+"";
String s4 = String.valueOf(a);
10.4 StringBuilder类
StringBuilder代表可变字符串对象,相当于是一个容器,它里面的字符串是可以改变的,就是用来操作字符串的。
好处:StringBuilder比String更合适做字符串的修改操作,效率更高,代码也更加简洁。
10.4.1 StringBuilder方法演示
public class Test{
public static void main(String[] args){
StringBuilder sb = new StringBuilder("itehima");
//1.拼接内容
sb.append(12);
sb.append("黑马");
sb.append(true);
//2.append方法,支持临时编程
sb.append(666).append("黑马2").append(666);
System.out.println(sb); //打印:12黑马666黑马2666
//3.反转操作
sb.reverse();
System.out.println(sb); //打印:6662马黑666马黑21
//4.返回字符串的长度
System.out.println(sb.length());
//5.StringBuilder还可以转换为字符串
String s = sb.toString();
System.out.println(s); //打印:6662马黑666马黑21
}
}
StringBuilder比String效率更高。
10.4.2 StringBuilder应用案例
public class Test{
public static void main(String[] args){
String str = getArrayData( new int[]{11,22,33});
System.out.println(str);
}
//方法作用:将int数组转换为指定格式的字符串
public static String getArrayData(int[] arr){
//1.判断数组是否为null
if(arr==null){
return null;
}
//2.如果数组不为null,再遍历,并拼接数组中的元素
StringBuilder sb = new StringBuilder("[");
for(int i=0; i<arr.length; i++){
if(i==arr.legnth-1){
sb.append(arr[i]).append("]");;
}else{
sb.append(arr[i]).append(",");
}
}
//3、把StirngBuilder转换为String,并返回。
return sb.toString();
}
}
10.5 StringJoiner类
StringJoiner号称是拼接神器,不仅效率高,而且代码简洁
public class Test{
public static void main(String[] args){
StringJoiner s = new StringJoiner(",");
s.add("java1");
s.add("java2");
s.add("java3");
System.out.println(s); //结果为: java1,java2,java3
//参数1:间隔符
//参数2:开头
//参数3:结尾
StringJoiner s1 = new StringJoiner(",","[","]");
s1.add("java1");
s1.add("java2");
s1.add("java3");
System.out.println(s1); //结果为: [java1,java2,java3]
}
}
使用StringJoiner改写前面把数组转换为字符串的案例
public class Test{
public static void main(String[] args){
String str = getArrayData( new int[]{11,22,33});
System.out.println(str);
}
//方法作用:将int数组转换为指定格式的字符串
public static String getArrayData(int[] arr){
//1.判断数组是否为null
if(arr==null){
return null;
}
//2.如果数组不为null,再遍历,并拼接数组中的元素
StringJoiner s = new StringJoiner(", ","[","]");
for(int i=0; i<arr.length; i++){
//加""是因为add方法的参数要的是String类型
s.add(String.valueOf(arr[i]));
}
//3、把StringJoiner转换为String,并返回。
return s.toString();
}
}
10.6 Math类
该类提供了很多个进行数学运算的方法,如求绝对值,求最大值,四舍五入等
public class MathTest {
public static void main(String[] args) {
// 目标:了解下Math类提供的常见方法。
// 1、public static int abs(int a):取绝对值(拿到的结果一定是正数)
// public static double abs(double a)
System.out.println(Math.abs(-12)); // 12
System.out.println(Math.abs(123)); // 123
System.out.println(Math.abs(-3.14)); // 3.14
// 2、public static double ceil(double a): 向上取整
System.out.println(Math.ceil(4.0000001)); // 5.0
System.out.println(Math.ceil(4.0)); // 4.0
// 3、public static double floor(double a): 向下取整
System.out.println(Math.floor(4.999999)); // 4.0
System.out.println(Math.floor(4.0)); // 4.0
// 4、public static long round(double a):四舍五入
System.out.println(Math.round(3.4999)); // 3
System.out.println(Math.round(3.50001)); // 4
// 5、public static int max(int a, int b):取较大值
// public static int min(int a, int b):取较小值
System.out.println(Math.max(10, 20)); // 20
System.out.println(Math.min(10, 20)); // 10
// 6、 public static double pow(double a, double b):取次方
System.out.println(Math.pow(2, 3)); // 2的3次方 8.0
System.out.println(Math.pow(3, 2)); // 3的2次方 9.0
// 7、public static double random(): 取随机数 [0.0 , 1.0) (包前不包后)
System.out.println(Math.random());
}
}
10.7 System类
这是系统类,提供了一些获取获取系统数据的方法。比如获取系统时间
-
/** * 目标:了解下System类的常见方法。 */ public class SystemTest { public static void main(String[] args) { // 1、public static void exit(int status): // 终止当前运行的Java虚拟机。 // 该参数用作状态代码; 按照惯例,非零状态代码表示异常终止。 System.exit(0); // 人为的终止虚拟机。(不要使用) // 2、public static long currentTimeMillis(): // 获取当前系统的时间 // 返回的是long类型的时间毫秒值:指的是从1970-1-1 0:0:0开始走到此刻的总的毫秒值,1s = 1000ms long time = System.currentTimeMillis(); System.out.println(time); for (int i = 0; i < 1000000; i++) { System.out.println("输出了:" + i); } long time2 = System.currentTimeMillis(); System.out.println((time2 - time) / 1000.0 + "s"); } }
### 10.8 Runtime类
这个类可以用来获取JVM的一些信息,也可以用这个类去执行其他的程序。
-
/** * 目标:了解下Runtime的几个常见方法。 */ public class RuntimeTest { public static void main(String[] args) throws IOException, InterruptedException { // 1、public static Runtime getRuntime() 返回与当前Java应用程序关联的运行时对象。 Runtime r = Runtime.getRuntime(); // 2、public void exit(int status) 终止当前运行的虚拟机,该参数用作状态代码; 按照惯例,非零状态代码表示异常终止。 // r.exit(0); // 3、public int availableProcessors(): 获取虚拟机能够使用的处理器数。 System.out.println(r.availableProcessors()); // 4、public long totalMemory() 返回Java虚拟机中的内存总量。 System.out.println(r.totalMemory()/1024.0/1024.0 + "MB"); // 1024 = 1K 1024 * 1024 = 1M // 5、public long freeMemory() 返回Java虚拟机中的可用内存量 System.out.println(r.freeMemory()/1024.0/1024.0 + "MB"); // 6、public Process exec(String command) 启动某个程序,并返回代表该程序的对象。 // r.exec("D:\\soft\\XMind\\XMind.exe"); Process p = r.exec("QQ"); Thread.sleep(5000); // 让程序在这里暂停5s后继续往下走!! p.destroy(); // 销毁!关闭程序! } }
10.9 BigDecimal类
为了解决计算精度损失的问题,Java给我们提供了BigDecimal类,它提供了一些方法可以对数据进行四则运算,而且不丢失精度,同时还可以保留指定的小数位
public class Test {
public static void main(String[] args) {
System.out.println(0.1 + 0.2);
System.out.println(1.0 - 0.32);
System.out.println(1.015 * 100);
System.out.println(1.301 / 100);
}
}
public class Test2 {
public static void main(String[] args) {
// 目标:掌握BigDecimal进行精确运算的方案。
double a = 0.1;
double b = 0.2;
// 1、把浮点型数据封装成BigDecimal对象,再来参与运算。
// a、public BigDecimal(double val) 得到的BigDecimal对象是无法精确计算浮点型数据的。 注意:不推荐使用这个,
// b、public BigDecimal(String val) 得到的BigDecimal对象是可以精确计算浮点型数据的。 可以使用。
// c、public static BigDecimal valueOf(double val): 通过这个静态方法得到的BigDecimal对象是可以精确运算的。是最好的方案。
BigDecimal a1 = BigDecimal.valueOf(a);
BigDecimal b1 = BigDecimal.valueOf(b);
// 2、public BigDecimal add(BigDecimal augend): 加法
BigDecimal c1 = a1.add(b1);
System.out.println(c1);
// 3、public BigDecimal subtract(BigDecimal augend): 减法
BigDecimal c2 = a1.subtract(b1);
System.out.println(c2);
// 4、public BigDecimal multiply(BigDecimal augend): 乘法
BigDecimal c3 = a1.multiply(b1);
System.out.println(c3);
// 5、public BigDecimal divide(BigDecimal b): 除法
BigDecimal c4 = a1.divide(b1);
System.out.println(c4);
// BigDecimal d1 = BigDecimal.valueOf(0.1);
// BigDecimal d2 = BigDecimal.valueOf(0.3);
// BigDecimal d3 = d1.divide(d2);
// System.out.println(d3);
// 6、public BigDecimal divide(另一个BigDecimal对象,精确几位,舍入模式) : 除法,可以设置精确几位。
BigDecimal d1 = BigDecimal.valueOf(0.1);
BigDecimal d2 = BigDecimal.valueOf(0.3);
BigDecimal d3 = d1.divide(d2, 2, RoundingMode.HALF_UP); // 0.33
System.out.println(d3);
// 7、public double doubleValue() : 把BigDecimal对象又转换成double类型的数据。
//print(d3);
//print(c1);
double db1 = d3.doubleValue();
double db2 = c1.doubleValue();
print(db1);
print(db2);
}
public static void print(double a){
System.out.println(a);
}
}
10.10 Date类
Java中是由Date类的对象用来表示日期或者时间。
Date对象记录的时间是用毫秒值来表示的。Java语言规定,1970年1月1日0时0分0秒认为是时间的起点,此时记作0,那么1000(1秒=1000毫秒)就表示1970年1月1日0时0分1秒
public class Test1Date {
public static void main(String[] args) {
// 目标:掌握Date日期类的使用。
// 1、创建一个Date的对象:代表系统当前时间信息的。
Date d = new Date();
System.out.println(d);
// 2、拿到时间毫秒值。
long time = d.getTime();
System.out.println(time);
// 3、把时间毫秒值转换成日期对象: 2s之后的时间是多少。
time += 2 * 1000;
Date d2 = new Date(time);
System.out.println(d2);
// 4、直接把日期对象的时间通过setTime方法进行修改
Date d3 = new Date();
d3.setTime(time);
System.out.println(d3);
}
}
10.11 SimpleDateFormat类
我们把Date对象转换为指定格式的日期字符串这个操作,叫做日期格式化,
反过来把指定格式的日期符串转换为Date对象的操作,叫做日期解析。
记住常用的几种日期/时间格式
字母 表示含义
yyyy 年
MM 月
dd 日
HH 时
mm 分
ss 秒
SSS 毫秒
"2022年12月12日" 的格式是 "yyyy年MM月dd日"
"2022-12-12 12:12:12" 的格式是 "yyyy-MM-dd HH:mm:ss"
按照上面的格式可以任意拼接,但是字母不能写错
public class Test2SimpleDateFormat {
public static void main(String[] args) throws ParseException {
// 目标:掌握SimpleDateFormat的使用。
// 1、准备一些时间
Date d = new Date();
System.out.println(d);
long time = d.getTime();
System.out.println(time);
// 2、格式化日期对象,和时间 毫秒值。
SimpleDateFormat sdf = new SimpleDateFormat("yyyy年MM月dd日 HH:mm:ss EEE a");
String rs = sdf.format(d);
String rs2 = sdf.format(time);
System.out.println(rs);
System.out.println(rs2);
System.out.println("----------------------------------------------");
// 目标:掌握SimpleDateFormat解析字符串时间 成为日期对象。
String dateStr = "2022-12-12 12:12:11";
// 1、创建简单日期格式化对象 , 指定的时间格式必须与被解析的时间格式一模一样,否则程序会出bug.
SimpleDateFormat sdf2 = new SimpleDateFormat("yyyy-MM-dd HH:mm:ss");
Date d2 = sdf2.parse(dateStr);
System.out.println(d2);
}
}
public class Test3 {
public static void main(String[] args) throws ParseException {
// 目标:完成秒杀案例。
// 1、把开始时间、结束时间、小贾下单时间、小皮下单时间拿到程序中来。
String start = "2023年11月11日 0:0:0";
String end = "2023年11月11日 0:10:0";
String xj = "2023年11月11日 0:01:18";
String xp = "2023年11月11日 0:10:57";
// 2、把字符串的时间解析成日期对象。
SimpleDateFormat sdf = new SimpleDateFormat("yyyy年MM月dd日 HH:mm:ss");
Date startDt = sdf.parse(start);
Date endDt = sdf.parse(end);
Date xjDt = sdf.parse(xj);
Date xpDt = sdf.parse(xp);
// 3、开始判断小皮和小贾是否秒杀成功了。
// 把日期对象转换成时间毫秒值来判断
long startTime = startDt.getTime();
long endTime = endDt.getTime();
long xjTime = xjDt.getTime();
long xpTime = xpDt.getTime();
if(xjTime >= startTime && xjTime <= endTime){
System.out.println("小贾您秒杀成功了~~");
}else {
System.out.println("小贾您秒杀失败了~~");
}
if(xpTime >= startTime && xpTime <= endTime){
System.out.println("小皮您秒杀成功了~~");
}else {
System.out.println("小皮您秒杀失败了~~");
}
}
}
10.12 Calendar类
Calendar类表示日历,它提供了一些比Date类更好用的方法。
public class Test4Calendar {
public static void main(String[] args) {
// 目标:掌握Calendar的使用和特点。
// 1、得到系统此刻时间对应的日历对象。
Calendar now = Calendar.getInstance();
System.out.println(now);
// 2、获取日历中的某个信息
int year = now.get(Calendar.YEAR);
System.out.println(year);
int days = now.get(Calendar.DAY_OF_YEAR);
System.out.println(days);
// 3、拿到日历中记录的日期对象。
Date d = now.getTime();
System.out.println(d);
// 4、拿到时间毫秒值
long time = now.getTimeInMillis();
System.out.println(time);
// 5、修改日历中的某个信息
now.set(Calendar.MONTH, 9); // 修改月份成为10月份。
now.set(Calendar.DAY_OF_YEAR, 125); // 修改成一年中的第125天。
System.out.println(now);
// 6、为某个信息增加或者减少多少
now.add(Calendar.DAY_OF_YEAR, 100);
now.add(Calendar.DAY_OF_YEAR, -10);
now.add(Calendar.DAY_OF_MONTH, 6);
now.add(Calendar.HOUR, 12);
now.set(2026, 11, 22);
System.out.println(now);
}
}
10.13 JDK8日期类
10.13.1 为什么JDK8要新增日期类
/**
目标:搞清楚为什么要用JDK 8开始新增的时间类。
*/
public class Test {
public static void main(String[] args) {
// 传统的时间类(Date、SimpleDateFormat、Calendar)存在如下问题:
// 1、设计不合理,使用不方便,很多都被淘汰了。
Date d = new Date();
//System.out.println(d.getYear() + 1900);
Calendar c = Calendar.getInstance();
int year = c.get(Calendar.YEAR);
System.out.println(year);
// 2、都是可变对象,修改后会丢失最开始的时间信息。
// 3、线程不安全。
// 4、不能精确到纳秒,只能精确到毫秒。
// 1秒 = 1000毫秒
// 1毫秒 = 1000微妙
// 1微妙 = 1000纳秒
}
}
10.13.2 JDK8日期、时间、日期时间
JDK8新增的日期类分得更细致一些,比如表示年月日用LocalDate类、表示时间秒用LocalTime类、而表示年月日时分秒用LocalDateTime类等;除了这些类还提供了对时区、时间间隔进行操作的类等。它们几乎把对日期/时间的所有操作都通过了API方法,用起来特别方便。
先学习表示日期、时间、日期时间的类;有LocalDate、LocalTime、以及LocalDateTime类。
LocalDate类的基本使用
public class Test1_LocalDate {
public static void main(String[] args) {
// 0、获取本地日期对象(不可变对象)
LocalDate ld = LocalDate.now(); // 年 月 日
System.out.println(ld);
// 1、获取日期对象中的信息
int year = ld.getYear(); // 年
int month = ld.getMonthValue(); // 月(1-12)
int day = ld.getDayOfMonth(); // 日
int dayOfYear = ld.getDayOfYear(); // 一年中的第几天
int dayOfWeek = ld.getDayOfWeek().getValue(); // 星期几
System.out.println(year);
System.out.println(day);
System.out.println(dayOfWeek);
// 2、直接修改某个信息: withYear、withMonth、withDayOfMonth、withDayOfYear
LocalDate ld2 = ld.withYear(2099);
LocalDate ld3 = ld.withMonth(12);
System.out.println(ld2);
System.out.println(ld3);
System.out.println(ld);
// 3、把某个信息加多少: plusYears、plusMonths、plusDays、plusWeeks
LocalDate ld4 = ld.plusYears(2);
LocalDate ld5 = ld.plusMonths(2);
// 4、把某个信息减多少:minusYears、minusMonths、minusDays、minusWeeks
LocalDate ld6 = ld.minusYears(2);
LocalDate ld7 = ld.minusMonths(2);
// 5、获取指定日期的LocalDate对象: public static LocalDate of(int year, int month, int dayOfMonth)
LocalDate ld8 = LocalDate.of(2099, 12, 12);
LocalDate ld9 = LocalDate.of(2099, 12, 12);
// 6、判断2个日期对象,是否相等,在前还是在后: equals isBefore isAfter
System.out.println(ld8.equals(ld9));// true
System.out.println(ld8.isAfter(ld)); // true
System.out.println(ld8.isBefore(ld)); // false
}
}
LocalTime类的基本使用
public class Test2_LocalTime {
public static void main(String[] args) {
// 0、获取本地时间对象
LocalTime lt = LocalTime.now(); // 时 分 秒 纳秒 不可变的
System.out.println(lt);
// 1、获取时间中的信息
int hour = lt.getHour(); //时
int minute = lt.getMinute(); //分
int second = lt.getSecond(); //秒
int nano = lt.getNano(); //纳秒
// 2、修改时间:withHour、withMinute、withSecond、withNano
LocalTime lt3 = lt.withHour(10);
LocalTime lt4 = lt.withMinute(10);
LocalTime lt5 = lt.withSecond(10);
LocalTime lt6 = lt.withNano(10);
// 3、加多少:plusHours、plusMinutes、plusSeconds、plusNanos
LocalTime lt7 = lt.plusHours(10);
LocalTime lt8 = lt.plusMinutes(10);
LocalTime lt9 = lt.plusSeconds(10);
LocalTime lt10 = lt.plusNanos(10);
// 4、减多少:minusHours、minusMinutes、minusSeconds、minusNanos
LocalTime lt11 = lt.minusHours(10);
LocalTime lt12 = lt.minusMinutes(10);
LocalTime lt13 = lt.minusSeconds(10);
LocalTime lt14 = lt.minusNanos(10);
// 5、获取指定时间的LocalTime对象:
// public static LocalTime of(int hour, int minute, int second)
LocalTime lt15 = LocalTime.of(12, 12, 12);
LocalTime lt16 = LocalTime.of(12, 12, 12);
// 6、判断2个时间对象,是否相等,在前还是在后: equals isBefore isAfter
System.out.println(lt15.equals(lt16)); // true
System.out.println(lt15.isAfter(lt)); // false
System.out.println(lt15.isBefore(lt)); // true
}
}
LocalDateTime类的基本使用
public class Test3_LocalDateTime {
public static void main(String[] args) {
// 0、获取本地日期和时间对象。
LocalDateTime ldt = LocalDateTime.now(); // 年 月 日 时 分 秒 纳秒
System.out.println(ldt);
// 1、可以获取日期和时间的全部信息
int year = ldt.getYear(); // 年
int month = ldt.getMonthValue(); // 月
int day = ldt.getDayOfMonth(); // 日
int dayOfYear = ldt.getDayOfYear(); // 一年中的第几天
int dayOfWeek = ldt.getDayOfWeek().getValue(); // 获取是周几
int hour = ldt.getHour(); //时
int minute = ldt.getMinute(); //分
int second = ldt.getSecond(); //秒
int nano = ldt.getNano(); //纳秒
// 2、修改时间信息:
// withYear withMonth withDayOfMonth withDayOfYear withHour
// withMinute withSecond withNano
LocalDateTime ldt2 = ldt.withYear(2029);
LocalDateTime ldt3 = ldt.withMinute(59);
// 3、加多少:
// plusYears plusMonths plusDays plusWeeks plusHours plusMinutes plusSeconds plusNanos
LocalDateTime ldt4 = ldt.plusYears(2);
LocalDateTime ldt5 = ldt.plusMinutes(3);
// 4、减多少:
// minusDays minusYears minusMonths minusWeeks minusHours minusMinutes minusSeconds minusNanos
LocalDateTime ldt6 = ldt.minusYears(2);
LocalDateTime ldt7 = ldt.minusMinutes(3);
// 5、获取指定日期和时间的LocalDateTime对象:
// public static LocalDateTime of(int year, Month month, int dayOfMonth, int hour,
// int minute, int second, int nanoOfSecond)
LocalDateTime ldt8 = LocalDateTime.of(2029, 12, 12, 12, 12, 12, 1222);
LocalDateTime ldt9 = LocalDateTime.of(2029, 12, 12, 12, 12, 12, 1222);
// 6、 判断2个日期、时间对象,是否相等,在前还是在后: equals、isBefore、isAfter
System.out.println(ldt9.equals(ldt8));
System.out.println(ldt9.isAfter(ldt));
System.out.println(ldt9.isBefore(ldt));
// 7、可以把LocalDateTime转换成LocalDate和LocalTime
// public LocalDate toLocalDate()
// public LocalTime toLocalTime()
// public static LocalDateTime of(LocalDate date, LocalTime time)
LocalDate ld = ldt.toLocalDate();
LocalTime lt = ldt.toLocalTime();
LocalDateTime ldt10 = LocalDateTime.of(ld, lt);
}
}
10.13.3 JDK日期(时区)
public class Test4_ZoneId_ZonedDateTime {
public static void main(String[] args) {
// 目标:了解时区和带时区的时间。
// 1、ZoneId的常见方法:
// public static ZoneId systemDefault(): 获取系统默认的时区
ZoneId zoneId = ZoneId.systemDefault();
System.out.println(zoneId.getId());
System.out.println(zoneId);
// public static Set<String> getAvailableZoneIds(): 获取Java支持的全部时区Id
System.out.println(ZoneId.getAvailableZoneIds());
// public static ZoneId of(String zoneId) : 把某个时区id封装成ZoneId对象。
ZoneId zoneId1 = ZoneId.of("America/New_York");
// 2、ZonedDateTime:带时区的时间。
// public static ZonedDateTime now(ZoneId zone): 获取某个时区的ZonedDateTime对象。
ZonedDateTime now = ZonedDateTime.now(zoneId1);
System.out.println(now);
// 世界标准时间了
ZonedDateTime now1 = ZonedDateTime.now(Clock.systemUTC());
System.out.println(now1);
// public static ZonedDateTime now():获取系统默认时区的ZonedDateTime对象
ZonedDateTime now2 = ZonedDateTime.now();
System.out.println(now2);
// Calendar instance = Calendar.getInstance(TimeZone.getTimeZone(zoneId1));
}
}
10.13.4 JDK8日期(Instant类)
接下来,我们来学习Instant这个类。通过获取Instant的对象可以拿到此刻的时间,该时间由两部分组成:从1970-01-01 00:00:00 开始走到此刻的总秒数+不够1秒的纳秒数。
该类提供的方法如下图所示,可以用来获取当前时间,也可以对时间进行加、减、获取等操作。
作用:可以用来记录代码的执行时间,或用于记录用户操作某个事件的时间点。
/**
目标:掌握Instant的使用。
*/
public class Test5_Instant {
public static void main(String[] args) {
// 1、创建Instant的对象,获取此刻时间信息
Instant now = Instant.now(); // 不可变对象
// 2、获取总秒数
long second = now.getEpochSecond();
System.out.println(second);
// 3、不够1秒的纳秒数
int nano = now.getNano();
System.out.println(nano);
System.out.println(now);
Instant instant = now.plusNanos(111);
// Instant对象的作用:做代码的性能分析,或者记录用户的操作时间点
Instant now1 = Instant.now();
// 代码执行。。。。
Instant now2 = Instant.now();
LocalDateTime l = LocalDateTime.now();
}
}
10.13.5 JDK8日期(格式化器)
DateTimeFormater可以对日期进行格式化和解析。它代替了原来的SimpleDateFormat类。
需要用到的方法,如下图所示
/**
目标:掌握JDK 8新增的DateTimeFormatter格式化器的用法。
*/
public class Test6_DateTimeFormatter {
public static void main(String[] args) {
// 1、创建一个日期时间格式化器对象出来。
DateTimeFormatter formatter = DateTimeFormatter.ofPattern("yyyy年MM月dd日 HH:mm:ss");
// 2、对时间进行格式化
LocalDateTime now = LocalDateTime.now();
System.out.println(now);
String rs = formatter.format(now); // 正向格式化
System.out.println(rs);
// 3、格式化时间,其实还有一种方案。
String rs2 = now.format(formatter); // 反向格式化
System.out.println(rs2);
// 4、解析时间:解析时间一般使用LocalDateTime提供的解析方法来解析。
String dateStr = "2029年12月12日 12:12:11";
LocalDateTime ldt = LocalDateTime.parse(dateStr, formatter);
System.out.println(ldt);
}
}
10.13.6 JDK8日期(Period类)
一个叫Period类、一个叫Duration类;这两个类可以用来对计算两个时间点的时间间隔。
其中Period用来计算日期间隔(年、月、日),Duration用来计算时间间隔(时、分、秒、纳秒)
先来演示Period类的用法,它的方法如下图所示。可以用来计算两个日期之间相隔的年、相隔的月、相隔的日。只能两个计算LocalDate对象之间的间隔
/**
目标:掌握Period的作用:计算机两个日期相差的年数,月数、天数。
*/
public class Test7_Period {
public static void main(String[] args) {
LocalDate start = LocalDate.of(2029, 8, 10);
LocalDate end = LocalDate.of(2029, 12, 15);
// 1、创建Period对象,封装两个日期对象。
Period period = Period.between(start, end);
// 2、通过period对象获取两个日期对象相差的信息。
System.out.println(period.getYears());
System.out.println(period.getMonths());
System.out.println(period.getDays());
}
}
10.13.7 JDK8日期(Duration类)
Duration类是用来表示两个时间对象的时间间隔。
可以用于计算两个时间对象相差的天数、小时数、分数、秒数、纳秒数;支持LocalTime、LocalDateTime、Instant等时间
public class Test8_Duration {
public static void main(String[] args) {
LocalDateTime start = LocalDateTime.of(2025, 11, 11, 11, 10, 10);
LocalDateTime end = LocalDateTime.of(2025, 11, 11, 11, 11, 11);
// 1、得到Duration对象
Duration duration = Duration.between(start, end);
// 2、获取两个时间对象间隔的信息
System.out.println(duration.toDays());// 间隔多少天
System.out.println(duration.toHours());// 间隔多少小时
System.out.println(duration.toMinutes());// 间隔多少分
System.out.println(duration.toSeconds());// 间隔多少秒
System.out.println(duration.toMillis());// 间隔多少毫秒
System.out.println(duration.toNanos());// 间隔多少纳秒
}
}
十一、算法和数据结构
11.1 Arrays类
11.1.1 Arrays基本使用
Arrays是操作数组的工具类,它可以很方便的对数组中的元素进行遍历、拷贝、排序等操作。
/**
目标:掌握Arrays类的常用方法。
*/
public class ArraysTest1 {
public static void main(String[] args) {
// 1、public static String toString(类型[] arr): 返回数组的内容
int[] arr = {10, 20, 30, 40, 50, 60};
System.out.println(Arrays.toString(arr));
// 2、public static 类型[] copyOfRange(类型[] arr, 起始索引, 结束索引) :拷贝数组(指定范围,包前不包后)
int[] arr2 = Arrays.copyOfRange(arr, 1, 4);
System.out.println(Arrays.toString(arr2));
// 3、public static copyOf(类型[] arr, int newLength):拷贝数组,可以指定新数组的长度。
int[] arr3 = Arrays.copyOf(arr, 10);
System.out.println(Arrays.toString(arr3));
// 4、public static setAll(double[] array, IntToDoubleFunction generator):把数组中的原数据改为新数据又存进去。
double[] prices = {99.8, 128, 100};
// 0 1 2
// 把所有的价格都打八折,然后又存进去。
Arrays.setAll(prices, new IntToDoubleFunction() {
@Override
public double applyAsDouble(int value) {
// value = 0 1 2
return prices[value] * 0.8;
}
});
System.out.println(Arrays.toString(prices));
// 5、public static void sort(类型[] arr):对数组进行排序(默认是升序排序)
Arrays.sort(prices);
System.out.println(Arrays.toString(prices));
}
}
11.1.2 Arrays操作对象数组
准备一个Student类,代码如下
public class Student implements Comparable<Student>{
private String name;
private double height;
private int age;
public Student(String name, double height, int age) {
this.name = name;
this.height = height;
this.age = age;
}
//...get、set、空参数构造方法、有参数构造方法...自己补全
// 指定比较规则
// this o
@Override
public int compareTo(Student o) {
// 约定1:认为左边对象 大于 右边对象 请您返回正整数
// 约定2:认为左边对象 小于 右边对象 请您返回负整数
// 约定3:认为左边对象 等于 右边对象 请您一定返回0
/* if(this.age > o.age){
return 1;
}else if(this.age < o.age){
return -1;
}
return 0;*/
//上面的if语句,也可以简化为下面的一行代码
return this.age - o.age; // 按照年龄升序排列
// return o.age - this.age; // 按照年龄降序排列
}
@Override
public String toString() {
return "Student{" +
"name='" + name + '\'' +
", height=" + height +
", age=" + age +
'}';
}
public double getHeight() {
return height;
}
public void setHeight(double height) {
this.height = height;
}
}
再写一个测试类
排序方法1:让Student类实现Comparable接口,同时重写compareTo方法。Arrays的sort方法底层会根据compareTo方法的返回值是正数、负数、还是0来确定谁大、谁小、谁相等。
public class Student implements Comparable<Student>{
private String name;
private double height;
private int age;
//...get、set、空参数构造方法、有参数构造方法...自己补全
// 指定比较规则
// this o
@Override
public int compareTo(Student o) {
// 约定1:认为左边对象 大于 右边对象 请您返回正整数
// 约定2:认为左边对象 小于 右边对象 请您返回负整数
// 约定3:认为左边对象 等于 右边对象 请您一定返回0
/* if(this.age > o.age){
return 1;
}else if(this.age < o.age){
return -1;
}
return 0;*/
//上面的if语句,也可以简化为下面的一行代码
return this.age - o.age; // 按照年龄升序排列
// return o.age - this.age; // 按照年龄降序排列
}
@Override
public String toString() {
return "Student{" +
"name='" + name + '\'' +
", height=" + height +
", age=" + age +
'}';
}
}
排序方法2:在调用Arrays.sort(数组,Comparator比较器);
时,除了传递数组之外,传递一个Comparator比较器对象。Arrays的sort方法底层会根据Comparator比较器对象的compare方法方法的返回值是正数、负数、还是0来确定谁大、谁小、谁相等。代码如下
public class ArraysTest2 {
public static void main(String[] args) {
// 目标:掌握如何对数组中的对象进行排序。
Student[] students = new Student[4];
students[0] = new Student("蜘蛛精", 169.5, 23);
students[1] = new Student("紫霞", 163.8, 26);
students[2] = new Student("紫霞", 163.8, 26);
students[3] = new Student("至尊宝", 167.5, 24);
// 2、public static <T> void sort(T[] arr, Comparator<? super T> c)
// 参数一:需要排序的数组
// 参数二:Comparator比较器对象(用来制定对象的比较规则)
Arrays.sort(students, new Comparator<Student>() {
@Override
public int compare(Student o1, Student o2) {
// 制定比较规则了:左边对象 o1 右边对象 o2
// 约定1:认为左边对象 大于 右边对象 请您返回正整数
// 约定2:认为左边对象 小于 右边对象 请您返回负整数
// 约定3:认为左边对象 等于 右边对象 请您一定返回0
// if(o1.getHeight() > o2.getHeight()){
// return 1;
// }else if(o1.getHeight() < o2.getHeight()){
// return -1;
// }
// return 0; // 升序
return Double.compare(o1.getHeight(), o2.getHeight()); // 升序
// return Double.compare(o2.getHeight(), o1.getHeight()); // 降序
}
});
System.out.println(Arrays.toString(students));
}
}